1.2 Span and Linear Independence

Quote. "Mathematics is not a careful march down a well-cleared highway, but a journey into a strange wilderness, where the explorers often get lost." Alexander Grothendieck (1928-2014)

Vocabulary.

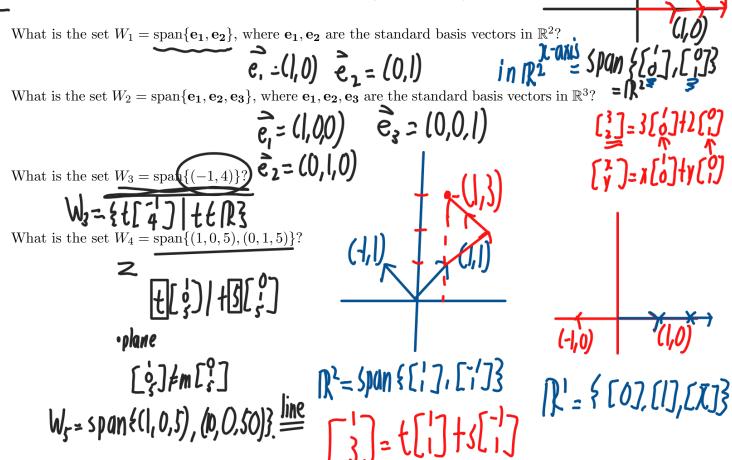
- trivial solution: the solution that consists of the zero vector.
- unit vector: a vector of length 1.
- and is defined in detail below.
- standard vectors in \mathbb{R}^2 : $\{\mathbf{e_1} = (1,0), \mathbf{e_2} = (0,1)\}$ d ways kng
- standard vectors in \mathbb{R}^3 : { $\mathbf{e_1} = (1,0,0), \mathbf{e_2} = (0,1,0), \mathbf{e_3} = (0,0,1)$ }
- linear independence: this is VERY important and is defined in detail below.
- basis: a minimum spanning set.

1. **Definition:** Span:

If $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_s}$ are vectors in \mathbb{R}^2 or \mathbb{R}^3 , the set of all linear combinations of these vectors

$$\{\mathbf{x}; \ \mathbf{x} = t_1 \mathbf{v_1} + t_2 \mathbf{v_2} + \dots + t_s \mathbf{v_s}, \ t_1, t_2, \dots, t_s \in \mathbb{R}\}$$

is called the **span** of v_1, v_2, \dots, v_s and denoted by $\text{span}\{v_1, v_2, \dots, v_s\}$.



- · Understand plane and parametric curves
- · understand defins of words!

Investigate set W for diff vectors
$$v_1, v_2$$

$$\overset{\sim}{V_1} = (1,0,0) \quad \overset{\sim}{V_2} = (0,1,0)$$

$$\overset{\sim}{V_1} = (1,0,0) \quad \overset{\sim}{V_2} = (0,0,1)$$

$$\overset{\sim}{V_1} = (1,0,0) \quad \overset{\sim}{V_2} = (0,0,1)$$

$$\overset{\sim}{V_1} = Span(\overset{\sim}{V_1},\overset{\sim}{V_2}) \qquad \overset{\sim}{V_2} = (0,0,1)$$

$$\overset{\sim}{V_2} = Span(\overset{\sim}{V_1},\overset{\sim}{V_2}) \qquad \overset{\sim}{V_2} = (0,0,1)$$

2. Linear independence

Suppose $\mathbf{v_1}$ and $\mathbf{v_2}$ are vectors in \mathbb{R}^3 . Consider the set

$$W = \operatorname{span}\{\mathbf{v_1}, \mathbf{v_2}\} = \{s\mathbf{v_1} + t\mathbf{v_2}; \ s, t \in \mathbb{R}\}\$$

Investigate the set W for different vectors $\mathbf{v_1}$ and $\mathbf{v_2}$.

Definition: Linear independence.

A non-empty set of vectors $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\}$ in \mathbb{R}^2 or \mathbb{R}^3 (or as we will see in \mathbb{R}^n) is linearly independent if the only scalars c_1, c_2, \dots, c_k that satisfy $c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} = \mathbf{0}$ are $c_1=0,\ c_2=0,\ \ldots,\ c_k=0.$ The integral $c_1\mathbf{v_1}+c_2\mathbf{v_2}+\cdots+c_k\mathbf{v_k}=0$

If there are constants c_1, c_2, \ldots, c_k , not all zero, that satisfy this equation, the set of vectors S is linearly dependent.

Are the following sets linearly independent? (a) $S = \{(1,0,0), (0,0,1)\}$ (b) $S = \{(0,1,0), (0,3,0)\}$

Suppose \mathbf{u} and \mathbf{v} are non-zero vectors. Are the following sets linearly independent?

(b)
$$\{u, v, 0\}$$
 No, (mtains a O vector $(\sqrt{w} + c_2 \overline{v} + c_3 \overline{o} = \overline{o}$ $c_1 = c_2 = 0$ $c_2 = 10$

Theorem 0.1 A set S with two or more vectors in \mathbb{R}^n is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other vectors in S.

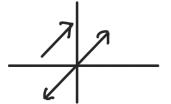
Proof:

Video

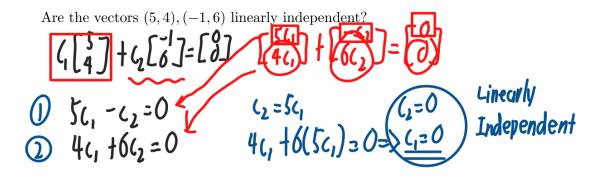
Corollary 0.2

(follow directly)
(a) $\{\mathbf{v_1}, \mathbf{v_2}\}$ are linearly dependent if and only if $\mathbf{v_1}$ and $\mathbf{v_2}$ are parallel;

(b) $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ are linearly dependent if and only if $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ lie in the same plane.



3. Checking linear independence



What do the above vectors span?

pan
$$\{(\frac{1}{2}), (\frac{1}{2}), (\frac{1}{2})\}$$

= span $\{[\frac{1}{2}], [\frac{1}{2}]\}$

plane. through

the origin

 $\{(\frac{1}{2}), [\frac{1}{2}]\}\}$
 $\{(\frac{1}{2}), [\frac{1}{2}]\}\}$

Can we express one of the vectors as a linear combination of the others?

$$[\frac{3}{2}] = 2[\frac{1}{2}] + 0[\frac{7}{2}]$$

And we imagine that we may need a more efficient way to do this! (coming in section 2.1)

4. Definition: **basis**

A set of vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_s}$ in \mathbb{R}^2 or \mathbb{R}^3 is called a **basis** for \mathbb{R}^2 or \mathbb{R}^3 if

$$e_1 = (1,0)$$

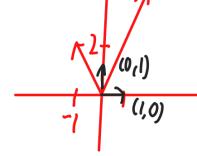
(a) span
$$\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_s}\} = \mathbb{R}^2$$
 or \mathbb{R}^3 ; and

(b) The set
$$\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_s}\}$$
 is linearly independent.

$$e_2^2 = (0,1)$$

Prove that the set
$$\{(-1,2),(1,5)\}$$
 is a basis for \mathbb{R}^2 .

$$\begin{bmatrix} \chi \\ \gamma \end{bmatrix} = \begin{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} +$$



Linear Independence

Consider the vector (3, 4) in relation to the standard basis and in relation to the basis above.

standard basis

$$\begin{bmatrix} \frac{3}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -1/7 \\ \frac{1}{7} \end{bmatrix} + \begin{bmatrix} 1/7 \\ \frac{1}{7} \end{bmatrix} + \begin{bmatrix} 1/7 \\ \frac{1}{7} \end{bmatrix}$$

$${\binom{3}{4}} = {\binom{5}{2}} + {\binom{5}{2}}$$

Q: # of vectors, (.I., can they NOT space \mathbb{R}^2 or \mathbb{R}^3)