1.5 Dot Products and Projections in \mathbb{R}^n

Quote. "The important thing to remember about mathematics is not to be frightened" Richard Dawkins (1941-)

Vocabulary.

- Scalar Product: another name for the dot product (the result of the dot product is a scalar)
- Inner product: another name for the dot product.
- Projection: an everyday example of this is your shadow a projection of you onto the ground.
- Unit Vector: a vector with a norm of 1
- Dimension of a space: the number of vectors in the basis that spans the space.
- ullet Hyperplane: n-dimensional generalization of the plane. A subspace whose dimension is one less than the ambient space.

Here generalize the dot product from \mathbb{R}^2 and \mathbb{R}^3 to \mathbb{R}^n and we introduce the important idea of projection.

1. Dot Products, Orthogonality, and Norms in \mathbb{R}^n

By way of series of examples, we will see how these operations generalize to \mathbb{R}^n

$$(1,1)\cdot(-1,5)=(1)(-1)+(2)(5)=9$$
 $(1,1,3,4)\cdot(4,0,0,1)=(1)(-1)+(2)(0)+(3)(0)+(4)(1)$
 $=3$
in any R^{r} $\vec{u}\cdot\vec{v}=0$ \vec{u} $\perp \vec{v}$ (orthogonal)

2. The Triangle Inequality

$$||\hat{x}+\hat{y}|| \le ||\hat{x}||+||\hat{y}||$$
 $||\hat{x}+\hat{y}|| \le ||\hat{x}||+||\hat{y}||$
 $||\hat{x}+\hat{y}|| \le ||\hat{x}+\hat{y}||$
 $|||\hat{x}+\hat{y}|| \le ||||$
 $|||||||$

3. The Cauchy-Schwartz Inequality (Complicated to Prove, not intuitive)

Fall 2020 video has a proof.

4. Hyperplane

Recall the method of finding the scalar equation of a plane in \mathbb{R}^3 :

Test points \hat{x} and \hat{p} , \hat{p} fixed, \hat{x} any other $\frac{point}{n \cdot (n - p)} = 0 \text{ (normal line)}$

Using the same method we can find scalar equation of the Hyperplane in \mathbb{R}^n m orthogonal to $\hat{\lambda}$ - $\hat{\mu}$ m, $\hat{\lambda}$, $\hat{\rho}$ $\in \mathbb{R}^n$

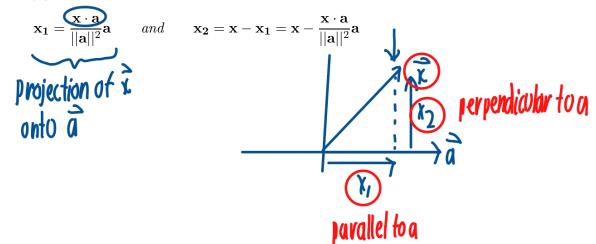
 $m_1 \chi_1 + m_2 \chi_2 + \dots + m_n \chi_n = \hat{m} \cdot \hat{p}$ in the scalar eg'n of the hyperplane.

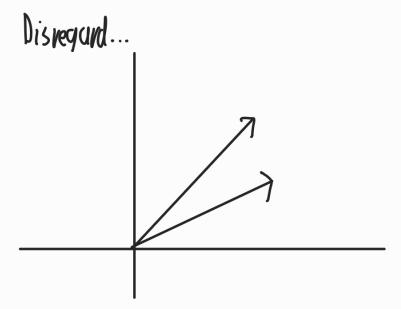
5. Orthogonal projections onto lines in \mathbb{R}^n

Theorem 0.1 If a is a non-zero vector in \mathbb{R}^n , then every vector \mathbf{x} in \mathbb{R}^n can be expressed in exactly one way as

$$\mathbf{x} = \mathbf{x_1} + \mathbf{x_2}$$

where $\mathbf{x_1}$ is in span $\{\mathbf{a}\}$ and $\mathbf{x_2}$ is perpendicular to \mathbf{a} . The vectors $\mathbf{x_1}$ and $\mathbf{x_2}$ are given by





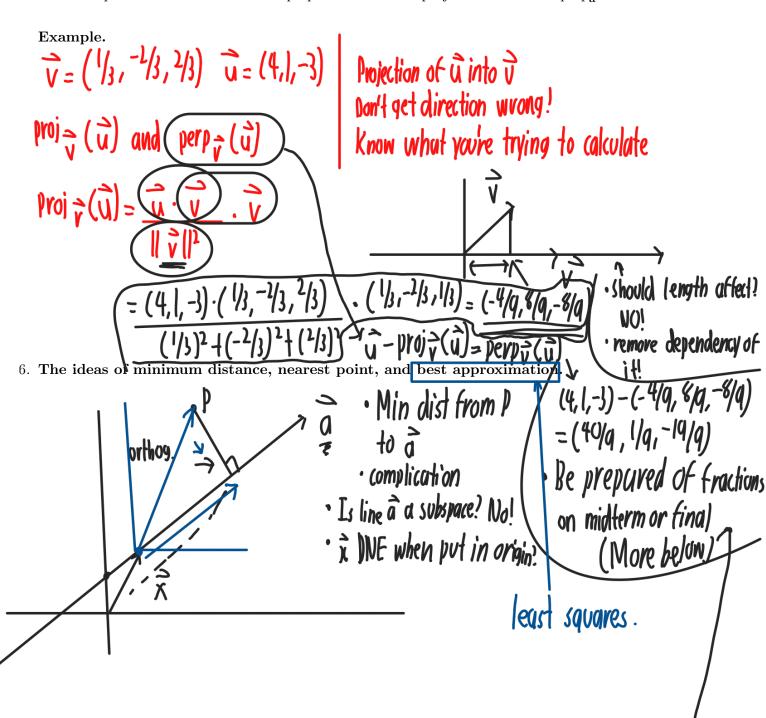
Definition: **orthogonal projection onto line in** \mathbb{R}^n

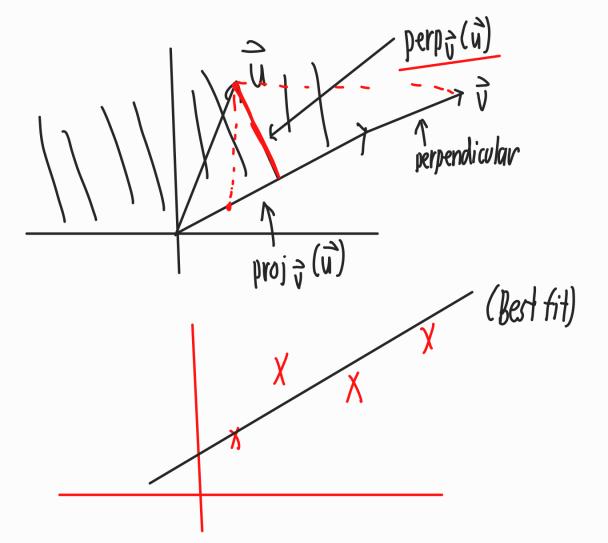
If **a** is a non-zero vector in \mathbb{R}^n and \mathbf{x} s any vector in \mathbb{R}^n , then the **orthogonal projection** of **x** onto the line span{**a**} is denoted by $\operatorname{proj}_{\mathbf{a}}\mathbf{x}$ and defined by

$$\operatorname{proj}_{\mathbf{a}} \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{a}}{||\mathbf{a}||^2} \mathbf{a}$$

The vector $\operatorname{proj}_{\mathbf{a}}\mathbf{x}$ is also called the vector component of \mathbf{x} along a and $\mathbf{x} - \operatorname{proj}_{\mathbf{a}}\mathbf{x}$ is called the vector component of \mathbf{x} orthogonal to a.

Note: the portion of the vector that is perpendicular to the projection is denoted perpax.





7. A bunch of exercises to do!

- (a) Find the orthogonal projection of \mathbf{x} onto the span $\{(2,3)\}$. Draw the graph.
- (b) Find the orthogonal projection of **x** onto the line x + 3y = 0. Draw the graph.
- (c) Given $\mathbf{x} = (7, -5, 9, -1)$ and $\mathbf{a} = (3, 0, 1, 2)$, find the vector components of \mathbf{x} along \mathbf{a} and orthogonal to \mathbf{a} .