1.4 Vectors in \mathbb{R}^n

Quote. "I have photographed many people: artists, writers, and scientists, among others. In speaking about their work, mathematicians use the words 'elegance', 'truth', and 'beauty' more than everyone else combined." Mariana Cook, American photographer (1955-)

Vocabulary.

- Closed under addition: if addition of two members of a set always produces another member of the set.
- Closed under scalar multiplication: if multiplying a member of a set by a scalar always produces another member of the set.
- \mathbb{R}^n : A space like \mathbb{R}^2 or \mathbb{R}^3 but the vectors have n components.
- Subspace: a subset of a space, closed under addition and scalar multiplication.

In this section we generalize what we have done in \mathbb{R}^2 and \mathbb{R}^3 to \mathbb{R}^n and we introduce the important idea of a subspace. In generalizing to \mathbb{R}^n , we will repeat some of what we have said before, with small extensions. This also serves as a review of the topics we have covered so far.

1. Equality, addition, scalar multiplication of vectors in \mathbb{R}^n

By way of series of examples, we will see how these operations generalize to \mathbb{R}^n

2. Closure a under given operation

Definition: Closed under addition

A non-empty subset S of \mathbb{R}^n is **closed under addition** if for all \mathbf{u} and \mathbf{v} in S, $\mathbf{u} + \mathbf{v}$ is also in S.

Let $S_1 = \{(1,0,0), (0,1,0)\}$. Is S_1 closed under addition?

Let $S_2 = \{(a, b, 0); \ a, b \in \mathbb{Z}\}$. Is S_2 closed under addition?

Definition: Closed under scalar multiplication

A non-empty subset S of \mathbb{R}^n is closed under scalar multiplication if for all \mathbf{u} in S and all c in \mathbb{R} , $c\mathbf{u}$ is also in S.

Is S_2 closed under scalar multiplication?

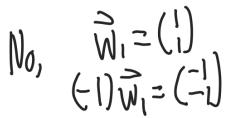
Let $S_3 = \{(x, y, 0); x, y \in \mathbb{R}\}$. Is S_3 closed under scalar multiplication?

3. Subspaces of \mathbb{R}^n

Definition: Subspace

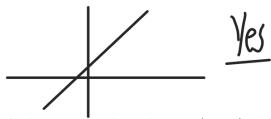
A subspace of \mathbb{R}^n is a non-empty subset of \mathbb{R}^n that is closed under addition and under scalar multiplication.

Is the set $W = \{(x, y); x > 0, y > 0\}$ a subspace of \mathbb{R}^2 ?



Not a subspace

Is a line in \mathbb{R}^n passing through origin a subspace of \mathbb{R}^n ?



Every subspa Is the line passing through point (1,0,0) and parallel with vector (0,1,1) a subspace of \mathbb{R}^3 ?

No

Is a plane in \mathbb{R}^n passing through origin a subspace of \mathbb{R}^n ?

Is the set $\{0\}$ a subspace of \mathbb{R}^n ?

Is the set \mathbb{R}^n a subspace of \mathbb{R}^n ?

Note: The *zero* subspace and \mathbb{R}^n are called **trivial subspaces** of \mathbb{R}^n .

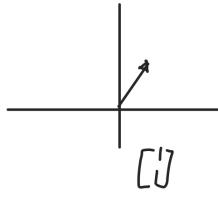
4. The subspaces of \mathbb{R}^2 and \mathbb{R}^3 .

In \mathbb{R}^2 , the possible subspaces are: the trivial subspace, lines through the origin and all of \mathbb{R}^2 .

In \mathbb{R}^3 , the possible subspaces are: the trivial subspace, lines through the origin, planes through the origin and all of \mathbb{R}^3 .

5. Spanning sets, linear independence, standard basis in \mathbb{R}^n

By way of series of examples, we will see how these concepts generalize to \mathbb{R}^n

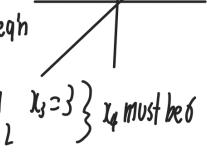


6. Bases of Subspaces.

A set of vectors that spans a subspace AND in which all of the vectors are linearly independent is a basis for the subspace.

Show
$$G=\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$$
 Every X

Every
$$\frac{1}{x}$$
 \in P(lane) satisfies $\frac{\chi_1 + \chi_2 + \chi_3 - \chi_4 = 0}{\chi_4 = \chi_1 + \chi_2 + \chi_3}$ Pick $\chi_1 = 1$ $\chi_2 = 3$



$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 = \\ x_4 = x_1 + x_2 + x_3 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
Show L.I.